Minimizers for the Thin One‐Phase Free Boundary Problem

نویسندگان

چکیده

Abstract We consider the “thin one‐phase" free boundary problem, associated to minimizing a weighted Dirichlet energy of function in plus area positivity set that . establish full regularity for dimensions , prove almost everywhere arbitrary dimension, and provide content structure estimates on singular when it exists. All these results hold range relevant weight. While our are typical calculus variations, approach does not follow standard one first introduced by Alt Caffarelli 1981. Instead, nonlocal nature distributional measure minimizer necessitates arguments less reliant underlying PDE. © 2021 Wiley Periodicals LLC.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

the algorithm for solving the inverse numerical range problem

برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.

15 صفحه اول

THE STEFAN PROBLEM WITH KINETIC FUNCTIONS AT THE FREE BOUNDARY

This paper considers a class of one-dimensional solidification problem in which kinetic undercooling is incorporated into the temperature condition at the interface. A model problem with nonlinear kinetic law is considered. The main result is an existence theorem. The mathematical effects of the kinetic term are discussed

متن کامل

Minimizers for a Double-well Problem with Affine Boundary Conditions

This paper is concerned with the existence of minimizers for functionals having a double-well integrand with affine boundary conditions. Such functionals are related to the so-called Kohn-Strang functional which arises in optimal shape design problems in electrostatics or elasticity. They are known to be not quasi-convex, and therefore existence of minimizers is, in general, guaranteed only for...

متن کامل

the stefan problem with kinetic functions at the free boundary

this paper considers a class of one-dimensional solidification problem in which kinetic undercooling is incorporated into the temperature condition at the interface. a model problem with nonlinear kinetic law is considered. the main result is an existence theorem. the mathematical effects of the kinetic term are discussed

متن کامل

The Structure of the Free Boundary in the Fully Nonlinear Thin Obstacle Problem

We study the regularity of the free boundary in the fully nonlinear thin obstacle problem. Our main result establishes that the free boundary is C near any regular point. This extends to the fully nonlinear setting the celebrated result of Athanasopoulos-Caffarelli-Salsa [ACS08]. The proofs we present here are completely independent from those in [ACS08], and do not rely on any monotonicity for...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Communications on Pure and Applied Mathematics

سال: 2021

ISSN: ['1097-0312', '0010-3640']

DOI: https://doi.org/10.1002/cpa.22011